IET Biometrics l
The Institution of

Research Article Engineering and Technology

ISSN 2047-4938

Received on 5th March 2018
Revised 23rd August 2018
Accepted on 25th September 2018
doi: 10.1049/iet-bmt.2018.5046
www.ietdl.org

Pose-based deep gait recognition

Anna Sokolova® =, Anton Konushin?2

"National Research University Higher School of Economics, 20 Myasnitskaya str., Moscow 101000, Russia
2L omonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russia
= E-mail: ale4kasokolova@gmail.com

Abstract: Human gait or walking manner is a biometric feature that allows identification of a person when other biometric
features such as the face or iris are not visible. In this study, the authors present a new pose-based convolutional neural
network model for gait recognition. Unlike many methods that consider the full-height silhouette of a moving person, they
consider the motion of points in the areas around human joints. To extract motion information, they estimate the optical flow
between consecutive frames. They propose a deep convolutional model that computes pose-based gait descriptors. They
compare different network architectures and aggregation methods and experimentally assess various body parts to determine
which are the most important for gait recognition. In addition, they investigate the generalisation ability of the developed
algorithms by transferring them between datasets. The results of these experiments show that their approach outperforms state-

of-the-art methods.

1 Introduction

Gait recognition is a computer vision problem that comprises the
identification of an individual in a video using the motion of their
body as the only source of information. Unlike face recognition or
re-identification problems, gait recognition does not rely solely on
an individual's appearance, which tends to make the task more
complex. Physiological studies show that each person has his/her
own unique manner of walking, which is difficult to forge; thus, a
person can be identified by the gait.

Gait recognition methods have several advantages that make
them usable in many applied problems. First, unlike the face, iris,
or fingerprints, gait representation can be recorded without a
subject's cooperation. The second advantage is that motion can be
captured and a person can be recognised even from a video with
low resolution. Such features are very significant in video
surveillance, and thus, gait recognition has become an important
field of inquiry, particularly in the security field, the primary goals
of which are the control of access to restricted areas and the
detection of people who have previously been captured on camera
(e.g. criminals).

Despite the uniqueness of gait, there are many factors that can
affect gait representation and make the problem more complicated.
Gait can appear to differ depending on the viewing angle or the
clothing worn by the subject. Furthermore, wearing different shoes
or carrying heavy bags will change the gait itself, and a recognition
algorithm should be stable to such changes.

The problem of gait recognition is closely related to several
computer vision problems. First, it is an identification problem
similar to face recognition, with the difference that in gait
recognition the motion of the body, but not the appearance, is of
importance. A person may wear a mask veiling the face or a coat
hiding the figure, but the body motion will still be the same. In
addition, as well as action recognition it is a video classification
problem, thus, the gait recognition problem may be solved by the
same methods as action recognition (e.g. [1]). A third problem
approximated to gait recognition is re-identification (re-id) [2];
however, as in face recognition, re-id usually addresses appearance
rather than motion not requiring high frame rate and smoothness of
the motion.

The similarity of these problems means that we can use
approaches from adjacent fields in gait recognition. Most modern
computer vision methods are based on convolutional neural
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networks (CNNs) and can be transformed for gait recognition.
However, despite the development of such algorithms the most
successful gait recognition approaches are still not deep and use
handcrafted features. In this work, we propose a CNN-based
algorithm for recognition of people based on their walking manner.
This method proves to be more stable in transfer learning and
achieves higher classification accuracy than previous gait
recognition models comparable to state-of-the-art approaches.

Since we investigate the motion of the body, the person's
appearance should not be taken into the account. Accordingly, we
can consider the optical flow (OF) as the main source of
information and avoid the use of raw images. Our experiments
reveal that such an approach does obtain sufficient data and
produces successful results.

Unlike [3, 4] we use not just motion of the whole body to
recognise the human, but consider the hierarchy of body parts from
full body to exact joints and observe the motion of the points in
these shrinking areas. Such an approach is novel in gait recognition
and distinguishes our method among the others.

Besides this, while using the proposed recognition model we do
not need to know exact viewing angles the videos are shot at,
which is an advantage of our method in the context of multiview
gait recognition.

The main contributions of this study are as follows:

* We are the first to use part-based OF models considering the
motion of the points in the surrounding of the human pose key
points.

e Our approach achieves high recognition quality exceeding the
state-of-the-art methods not only in side-view mode but in many
settings of multi-view recognition.

2 Related work

Currently, there are two leading approaches to gait recognition. The
more traditional approach is based on the extraction of handcrafted
features from image frames. Most investigations following this
approach use silhouette masks as the main source of information
and extract features that show how these masks change. The most
popular descriptor of gait used in such investigations is the gait
energy image (GEI) [5], a binary mask averaged over the gait cycle
of a human figure. This approach has developed significantly
during recent years. Many different descriptors have been proposed
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Fig. 1 Pipeline of the algorithm

for application to GEI (e.g. the histograms of oriented gradients [6,
7] and histograms of OF [8, 9]) or to entire silhouette sequences,
e.g. the frame difference energy image [10] to provide additional
aggregation for better gait representation. GEIs are also used in a
unified metric learning framework [11] where joint intensity and
spatial metric are optimised in order to mitigate the intrasubject
differences and increase the intersubject ones.

One more gait representation technique based on silhouette
extraction is entropy discrete fourier transform (EnDFT) [12]. This
approach combines two other techniques: DFT [13] and gait
entropy image (GEnl) [14]. In the first one, the mean of binary
silhouette masks with exponentially decreasing weights is
calculated, while the second one computes the entropy of each
point of silhouette over the gait period. GEnl is the mixture of
these approaches, the entropy is computed from DFT instead of
GEL Besides, the most effective human body parts are used for the
recognition according to the recognition accuracy of the rows of
DFT gait features.

Human body parts are considered in some other approaches, as
well. Whytock et al. [15] propose a skeleton-based method
considering the set of distance functions for a silhouette and in [16]
the kinematic features based on the joints motion are fused with the
spatial-temporal ones.

Despite the variety of hand-crafted features proposed for
recognition, most of these approaches do not achieve high accuracy
on the challenging gait databases. Nevertheless, there is a method
that reaches the state-of-the-art result. The highest cross-view
recognition quality is shown by Li et al. [17] who proposed the
Bayesian approach. GEI is supposed to be a sum of gait identity
values and some noise standing for different gait variations (view,
clothing, carrying bags etc.) both following Gaussian distribution.
Covariance matrices of these distributions are optimised by
expectation-maximisation (EM) algorithm considering the joint
distribution of GEI pairs. Similar to most of the multiview
recognition approaches in [17] GEI images are calculated for each
viewing angle separately, so, the knowledge of angles in the
training set is required.

Another approach to gait recognition is neural networks. Deep
models have been used to obtain the best results in most computer
vision problems and have recently inspired new investigations of
gait based on CNN. The similarity of gait and action recognition
problems means that many approaches applied to the latter can be
used for the former. The first and most classical deep method was
proposed by Simonyan and Zisserman [18]. To recognise human
actions, they trained a network with an architecture comprising two
similar types of branches: image and flow streams. The former
processes raw frames of video, while the latter gets the maps of OF
computed from pairs of consecutive frames as input. To consider
long-duration actions, several consecutive flow maps are stacked
into blocks that are used as network inputs. Many action
recognition algorithms based on this framework apply variant top
architectures (including the recurrent architectures [19] and
methods for fusing several streams [20]). Another method based on
OF considers temporal information using three-dimensional
convolutions [21].

The most applicable to gait recognition is the pose-based CNN
[22] method proposed for action recognition. Similar to previous
approaches, this method uses two streams but, in place of full-body
maps, each stream receives patches in which different body parts
are cropped. Thus, some joints are considered more precisely,
which helps in the recording of small but important bodily motions.
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The OF approach was applied to the gait recognition problem in
several works [3, 4, 23], which proposed a deep model using
blocks of OF maps containing full bodies as inputs to predict
recorded individuals. Several other deep gait recognition solutions
unite neural and GEI approaches. GEINet [24] computes gait
energy images at various viewing angles for network input. In
DeepGait [25] neural network features are extracted using
silhouette masks as input and maximum response over the gait
cycle is used. Wu et al. [26] proposed a deep CNN that predicted
the similarity given a pair of gait sequences and considered
different ways of comparing gait features. Siamese convolution
network allowing to compare the pairs of objects is also used in
one more state-of-the-art method, [27] where triplet and contrastive
losses are considered for training, and in many other approaches.
Being based on GEI computed for each view all these methods
similarly to [17] need to know the angles of all the frames of the
video. Such a requirement can hardly be accomplished in real life
data.

Additionally to convolutional feed-forward neural networks the
recurrent networks are applicable to gait recognition as well as to
other problems concerning video. Tong et al. [28] use the long
short-term memory unit (LSTM) [29] to get gait features from
silhouette sequences, while several other approaches [30, 31] make
intermediate pose evaluation and obtained pose features are fed
into LSTM layers.

However, despite the success of neural network approaches
such as these, some non-deep methods still achieve a higher quality
of gait recognition.

The review of existing methods shows that in spite of the great
variety of approaches, the problem remains unsolved. The main
difficulty concerning multi-angle is not overcome and even side
view recognition is still not perfect. Besides this, even achieving
high quality on the existing benchmarks many methods require the
knowledge of viewing angles of the videos, which complicates
their applicability to real life data where the viewing angles are
usually not labelled.

3 Proposed method

Here, we describe the pipeline of our proposed method. Although
the algorithm is based on neural networks, two important data
preprocessing stages are applied: motion map computation and
frame-by-frame evaluation of the individual's pose. After these
steps are completed, the network can be trained to classify video
sequences. The scheme of our proposed approach is shown in
Fig. 1.
Let us discuss all the stages of the algorithm.

3.1 Preprocessing the data

As our goal is to train a feature extractor that does not depend on,
e.g. clothing colour or personal appearance, we can eliminate all
colour information and use only motion. To do this, we compute
maps of OF between each pair of consecutive frames and treat
these maps as inputs. To calculate OF we use the method proposed
by Farnebéck [32]. The algorithm consists of two steps: quadratic
approximation of each pixel neighbourhood by polynomial
expansion transform and point displacement estimation based on
the transformation of the polynomials under translations. Having
the vector field computed we consider three-channel OF maps in
which the first two channels carry, respectively, horizontal and
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vertical components of flow vectors and the third one carries
magnitude. Prior to further processing, all maps are linearly
transformed to the interval [0, 255] in a coding similar to that used
in red, green and blue (RGB) channels. Since OF represents the
apparent motion between frames, the only problem can appear if
the human's clothing mimics the background, but as it actually
happens very rarely we suppose that this problem does not limit
our approach.

We can further assume that the motions of some parts of the
human body are more informative than others and,
correspondingly, evaluate the human pose and limit our analysis of
OF maps to the neighbourhoods of such key positions. For
example, the hands are not very informative, as while walking the
human can move his hands independently (carrying a bag,
speaking on the phone or just folding his arms). So, the features
obtained from the hands’ motion are supposed to be noisy and not
useful for recognition. Thus, we expect that the bottom part of the
body carries more gait information and therefore pay more
attention to the legs than to either the hands or the head.

We, therefore, estimate the pose of the human in each frame by
finding joint locations by OpenPose [33] algorithm. This method
extends the convolutional pose machines [34] approach based on
applying the cascade of several predictors specifying the
estimations of each other. At each stage, there is a neural network
with a small convolutional architecture predicting the heatmaps of
joints locations. Such a step-by-step procedure allows us to
increase the receptive field and observe the whole image as well as
local features leading to prediction refinement.

Having found the locations of human pose key points, we crop
five patches from the OF maps: right foot, left foot, upper body,
lower body, and full body. Bounding boxes of these body parts are
shown in Fig. 2. The idea of considering points motion maps in the
neighbourhood of human body parts is novel compared to other
gait recognition approaches based on OF.

The patches for network training are chosen in the following
way. The leg patches are squares with key foot points in their
centres, the patch should cover the whole foot including heel and
toes, and thus, the side of the square is empirically chosen to be
25% of humans’ height. The upper body patch contains all of the
joints from the head to the hips (including the hands), and the
lower body patch contains all of the joints from the hips to the feet
(excluding the hands). Thus, each pair of consecutive frames
produces five patches for use as network inputs. Prior to inputting
the data into the network, the resolution of each patch is decreased
to 48 x 48 pixels.

It is also worth noting that as we detect the person and his body
parts in each frame, we filter the frames and take into account only
those frames that contain the full human figure. So, sometimes
several frames at the beginning and the end of the video (where the
person is not in the frame entirely) are not used.

Fig. 2 Bounding boxes for human body parts: right and left feet (small
blue boxes at the bottom), upper and lower body (green boxes in the
middle) and full body (big red box)

Table 1 VGG-like architecture

3.2 Data augmentation

The primary component of the proposed algorithm involves the
extraction of neural features. As every deep neural network has a
large number of parameters, it is necessary to augment the data to
obtain a stable and not over-fitted algorithm.

The data is augmented using classic spatial changes. In the
training process, four numbers are uniformly sampled for each of
the five considered body parts to construct the bounds of an input
patch. The first two numbers are left and right extensions chosen
from the interval [0,w/3], where w is the width of the initial
bounding box, while the latter two numbers are upper and lower
extensions in [0,/4/3], where & is the height of the box. The
resulting bounded patches are cropped from the OF maps and then
resized to 48 x 48.

This augmentation allows us to obtain patches containing body
parts undergoing both spatial shifts and zoom. If the sum of the
sampled numbers is close to zero, a large image of the body part
with a very little excess background is obtained; otherwise, the
image is smaller with more background. On the other hand, fixing
the sums of the first and the second pairs of bounds produces body
parts with the same size but changed location inside the patch.

3.3 Training the neural network

The network is trained using the augmented data produced above
and then used as a feature extractor, with the outputs of the last
hidden layer used as gait descriptors. In the testing stage, instead of
sampling random bounds for each patch, their mean value is taken
(w/6 and h/6, respectively) to locate the body part in the centre of
the patch.

3.3.1 CNN architectures and training methods: We consider
and compare two network architectures. The first one is based on
the VGG-19 [35] network but has one less convolutional block;
details of this architecture are shown in Table 1.

Each column of this table corresponds to a block of layers. The
first four blocks are convolutions, with each row denoting, for each
layer in the block, the size of its filters (3 X 3 for all the layers) and
the number of filters; the number of filters per block is doubled in
each succeeding block. Additionally, there are four max-pooling
layers of size 2 X 2 after each convolutional block.

The next two blocks are fully connected, with each comprising
one linear dense layer of size 4096 and a dropout (d/o) with the
probability parameter p = 0.5. Similar to convolutions, the dense
layers are followed by rectified linear unit (ReLU) nonlinearities.
The final column denotes the top block, comprising a dense layer
and a softmax nonlinearity. The number of units in this block is
equal to the number of training subjects that can train the network
for a classification task.

During training, an L, norm of dense layer weights is added to
the loss function to enhance the regularisation against overfitting.

Networks similar to this have produced the best results in
previous experiments [3] in which the blocks of several
consecutive OF maps were used as network inputs. However, that
approach [3] did not take into account the key points of the human
pose; instead, the full body was used. We will further compare this
previous study with our approach in Section 4.

Similar to the block-based model [3], we trained our network
step by step. We started from 1024 units in two hidden dense layers
and trained the network while doubling the layer size each time the
accuracy ceased to increase. When the layer size reached 4096
units, the training stopped. Each widening of the network was

B1 B2 B3 B4 F5 F6 SM

3x3,64 3x3,128 3x3,256 3x3,512 — — —

3x3,64 3x3,128 3x3,256 3x3,512 4096 4096 soft-
3x3, 256 3x3,512 d/o d/o max

pool 2 pool 2 pool 2 pool 2 — — —
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Table 2 WideResNet architecture

B1 B2 B3 B4
3x3,16 BN BN BN BN
3x3,64 33,128 33,256
X3 X X3
BN BN BN
3x3,64 33,128 33,256
stride 1 stride 1 stride 2 stride 2
v v
BatchNorm + Non-Linearity ] [ BatchNorm + Non-Linearity ]

BatchNorm + Non-Linearity

Elementwise Sum

/ Conv 3x3, stride 2

Conv 1x1

BatchNorm + Non-Linearity

Fig. 3 Details of the construction of residual blocks. Left: common block
with the same input and output tensor shape. Right: ‘decreasing block’ with
stride and extra convolution used when the number of filters increases and
map size decreases

implemented by random initialisation of new parameters to add
extra regularisation and prevent overfitting while training.

After developing this deep CNN with both convolutional and
dense layers, we considered implementing the second architecture
not used in our previous research: a fully convolutional residual
network. One of the more successful architectures in computer
vision used for image classification task is the ResNet architecture,
in which residual connectivity allows for the transfer of
information from low to high levels and the addition of each new
block increases the accuracy of classification. Furthermore, the
absence of fully connected layers in the ResNet architectures
reduces the number of parameters of the model. These features
have made ResNet a very popular architecture and inspired our
investigation of its use here. Although residual networks achieve
great results, they require large numbers of layers to significantly
improve their performance, and each new block significantly
lengthens the training process. Another problem with deep
networks is exploding or vanishing gradients as a result of very
long paths from the last to the first layer during backpropagation.
To avoid these problems, we use the wide residual network
(WideReSNet) [36] with decreased depth and increased residual
block width; the resulting reduction in the number of layers made
the training process much faster and allowed the network to be
optimised with less regularisation.

Table 2 shows the details of our WideResNet architecture.

Each column in the table defines a set of convolution blocks
with the same number of filters. As in VGG-like architectures, all
of the convolutions have kernels of size 3 x 3. The first layer has
16 filters and is followed by batch normalisation (BN) and then
three residual blocks, each comprising two convolutional layers
with 64 filters with normalisation between them. This block
construction is classical for WideResNet architectures, and all of
our blocks have similar structures. In each successive group, the
blocks have twice as many filters as in the previous group. Each
first convolutional layer in groups B3 and B4 has a stride with
parameter 2; therefore, the tensor size begins at 48 X 48 pixels and
decreases to 24 X 24 and then 12X 12 in groups B3 and B4,
respectively.

The detailed construction of residual blocks is shown in Fig. 3.
The scheme on the left corresponds to a common block without
strides when the input and output shapes coincide; that on the right
defines the structure of the first block of the group (columns B3
and B4) as the number of filters doubles and the size of the map
decreases. In this case, we add one auxiliary convolutional layer
with a 1 X 1 kernel, stride, and doubled number of filters to make
all of the shapes equal before the summation.

Following the residual blocks is a final process necessary to
make the network useful for classification. This comprises one
additional BN layer, an average pooling that ‘flattens’ the sequence
of maps 12 X 12 obtained following the convolutions to one vector
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and one dense layer with softmax on the top. The number of units
in this dense layer is equal to the number of subjects in the training
set. All of the activations except for the final softmax are ReLUs
that follow the BN layers.

3.4 Final classification

The network is trained to predict one of the subjects from the
training set with a patch cropped from its OF map. As our goal is to
construct a feature extractor that can be used without retraining or
fine-tuning for any testing set, we use the outputs of the final
hidden layer as the gait descriptors and construct a new classifier
for them. As we assume that the gait descriptors of a given person
are spatially close to each other, we can use one of the simplest
methods, the nearest neighbour (NN) classifier. We make a further
L, normalisation of all gait feature vectors prior to fitting and
classifying, as many studies have shown that having a uniform
length across all vectors improves the accuracy of NN
classification.

Although most classical measures of distance between two
vectors are Euclidean, we also consider the use of the Manhattan
distance as a metric. So, we make experiments with each of these
two metrics as similarity measure in the NN classifier and compare
them. Despite the fact that normalisation is always performed
relative to the L, distance, in most experiments it has been shown
that finding the closest descriptor with respect to L, metrics
produces better and more stable results.

To improve and speed up the classification, we reduce the
dimensionality of the feature vectors using a principal component
analysis (PCA) algorithm to reduce noise in the data and accelerate
the fitting of classifiers.

3.4.1 Fusion of feature vectors: The trained neural network and
fitted NN classifier allow us to predict which subjects have patches
with the OF around one of the body parts. As we are starting the
analysis from an initial video sequence, if we consider j body parts
we obtain j patches for each pair of consecutive frames and
therefore (N — 1) descriptors for the video, where N is the number
of frames in the sequence. If we consider the frames separately, we
can obtain (N — 1)j answers per video; however, we require only
one. We investigate two methods for constructing one feature
vector from all network outputs. The first, a ‘naive’ method,
involves averaging all of the descriptors by calculating the mean
feature vector over all frames and all body parts. This approach is
naive in that the descriptors corresponding to different body parts
have different natures; even if we compute them using one network
with the same weights, it would be expected that averaging the
vectors would mix the components into a disordered result.
Surprisingly, the accuracy achieved using this approach is very
high, as will be shown through comparison with another approach
in the next section.

The second and more self-consistent approach is averaging the
descriptors over only time. After doing so, j mean descriptors
corresponding to each of j body parts are obtained and
concatenated to produce one final feature vector.

4 Data and experiments
4.1 Datasets

We evaluated the methods described in the preceding section on
three popular gait databases: the “TUM Gait from Audio, Image
and Depth’ (TUM-GAID) [37] dataset; CASIA Gait Dataset B
[38]; and the OU-ISIR Gait Database, Large Population Dataset
(OULP) [39].

The TUM-GAID dataset, comprising videos for 305 subjects, is
a sufficiently large database for gait recognition problems. The
videos have lengths of 2-3 s apiece at a frame rate of 30 fps; we
used all of them in our experiments. All videos are recordings of
people of full height walking, captured from the side view.
Although each person is recorded from only one viewpoint, there
are several video sequences per subject taken under various
conditions, e.g. wearing different shoes or carrying various items.
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Fig. 4 Examples of frames from three databases: TUM-GAID (the first
column), CASIA Gait Dataset B (the second column) and OU-ISIR (the
third and fourth columns)

Table 3 Results on TUM-GAID dataset

Method Evaluation
Architecture, aggregation and metrics Rank-1, % Rank-5, %
VGG (PCA 1000), avg, L, 96.4 100.0
VGG (PCA 1000), avg, L, 97.8 100.0
VGG (PCA 500), concat, L, 97.4 99.9
VGG (PCA 500), concat, L, 98.8 100.0
wide ResNet (PCA 230), avg, L, 98.3 99.9
wide ResNet (PCA 230), avg, L, 99.2 99.9
wide ResNet (PCA 150), concat, L, 98.8 99.8
wide ResNet (PCA 150), concat, L, 99.8 99.9
VGG + blocks [3], L, 97.5 99.9
CNN + support vector machine (SVM) [4], 98.0 99.6
L,

deep multi-task model (DMT) [23] 98.9 —
random subspace method (RSM) [43] 92.0 —
skeleton variance image (SVIM) [15] 84.7 —
divergence-Curl-Shear descriptor (DCS) 99.2 —
[42]

H2M [42] 99.2 —
PFM [41] 99.2 99.5

Overall, there are ten videos per subject: six normal walks, two
walks in coating shoes, and two walks with a backpack. Examples
of video frames are shown in Fig. 4 (first column). As is true of
most gait databases, TUM-GAID's records contain one person per
video without any intersection between figures. This is, of course, a
naive approach, as in real life people often walk together with their
bodies intersecting; nevertheless, this structure allows for the
training of a model for checking if the problem of gait recognition
can be theoretically solved. As the TUM-GAID is a relatively large
database, it was the main data source in our experiments.

The second database we investigated is CASIA Gait Dataset B.
This dataset contains only 124 subjects but is multiview: records
are captured from 11 different viewpoints at angles ranging from 0°
to 180°. As in the TUM-GAID dataset, there are ten videos per
person captured under different conditions: normal walking,
carrying a bag, and wearing a coat. Despite the fact that there are
several sequences per subject and viewpoint, the dataset is very
small for the purposes of deep modelling, as neural networks must
contain many parameters, especially if they are to handle
multiview modes. Thus, in most of the experiments with CASIA
dataset, we used only side-view videos captured from a constant
angle and solved the side-view problem alone. Frames from the
CASIA database are shown in the second column of Fig. 4.
Although the combination of a great variety of conditions (a large
number of viewpoints, carrying and clothing conditions) and
relatively small number of subjects makes this database really
challenging we have conducted an additional experiment
concerning all viewing angles presented in this database to check if
the proposed method can be generalised for multiview recognition.

The third dataset we used is the OU-ISIR Gait Database. This is
the largest gait database of the three, containing over 4000 subjects,
each captured by two cameras at four different angles (55°, 65°,
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75°, and 85°). The dataset is formatted as a set of silhouette
sequences, making the data different from those in the other sets.
Examples of silhouettes from this database are shown in the third
and fourth columns of Fig. 4. The specialty of the OU-ISIR dataset
is that the shooting angles change smoothly from 55° to 85°. Thus,
the frames shot at the intermediate angles are labelled both nearest
‘main’ angles. We applied our algorithm to the OU-ISIR database
to determine if silhouette masks are sufficient for gait recognition.
As the algorithm we use for pose estimation requires full images,
we did not create body part patches and extracted only full body
features. We used a subset of the OU-ISIR database comprising
two walks taken from 1912 subjects to meet the protocols of
benchmarks [40].

4.2 Performance evaluation

The experiments were conducted in the following manner. The
feature extractor was trained on a training set containing all data
for approximately one-half of all subjects in the database (155 for
TUM-GAID, 64 for CASIA, and 956 for OU-ISIR). The rest of the
subjects were used for fitting the final classifier and testing the
overall algorithm. The fitting components comprised four normal
walks per person, while the testing components contained a further
six walks (including two pairs of walks under different additional
conditions). We randomly sampled 64 training subjects from the
CASIA base, while the splits for the TUM-GAID and OU-ISIR
datasets were provided by their authors.

For each of the testing videos, the algorithm returns the vector
of a probability distribution over all subjects from the testing set.
We evaluated the quality of classification computing Rank-1 and
the Rank-5 metrics that defined the ratio of videos in which the
correct label was among the top five classifier answers. We also
plotted cumulative match characteristics (CMC) curve to compare
different techniques more clearly.

Additionally to identification experiments we compared the
verification quality of different methods. All the videos for testing
subjects were divided into training and testing parts the same way
as in the identification task. For each pair of training and testing
videos, the algorithm returns the distance between the
corresponding feature vectors and predicts if there is the same
person on both video sequences according to this distance. To
evaluate the quality of the verification we plotted the receiver
operating characteristic (ROC) curves of false acceptance rates and
false rejection rates and calculated equal error rates (EERs).

4.3 Experiments and results

The goal of all experiments was to explore the influence of
different conditions on gait performance, including:

» network architecture and aggregation methods;
* joints used for training and testing the algorithms;
* length of the captured walk.

In addition, we investigated the generality of the algorithms by
training them on one dataset and applying them to another, as we
expected that algorithms that depend only on body motion would
work equally well on different databases.

We compared our results with those produced during the last
few years including the approach based on Fisher vectors [41] and
multimodal features (RGB frames, audio, and depth) [42], which
have demonstrated state-of-the-art results.

The first set of experiments aimed at evaluating the approach
itself and comparing different technical methods such as network
architectures, aggregation methods, and similarity measures. All
the algorithms were trained from scratch. The results are shown in
Table 3, from which it is seen that our approach was most accurate
and that it outperformed all the state-of-the-art methods.

In Table 3, ‘Avg’ denotes a naive approach for feature
aggregation in which the mean descriptor is computed over all
body parts, while ‘concat’ defines the concatenation of descriptors,
which produces better results.



Table 4 Results for different conditions on TUM-GAID
dataset

Method Normal Backpack Shoes Avg
WideResNet, L1 100.0 100.0 99.4 99.8
VGG + blocks [3] 99.7 96.5 96.5 975
CNN +SVM L, [4] 99.7 971 971 98.0
DCS [42] 99.7 99.0 99.0 992
H2M [42] 99.4 100.0 981 992

—— VGG + blocks, EER = 3,3%
. EER = 4,6%
esNet, full body, EER = 1,3%

—— VGG + blocks

VGG, 5 body parts
—— Wide ResNet, full body
—— Wide ResNet, 5 body parts

Identification Rate[ %]

<
3
a8
g

False Rejection Rates[ %]

Rank False Acceptance Rates[ %]

Fig. 5 CMC (left) and ROC (right) curves for TUM-GAID dataset under
different settings

Table 5 Results on lateral-view part of CASIA dataset

Architecture, aggregation, and metrics Rank-1, %
WideResNet (PCA 150), avg, L, 85.1
WideResNet (PCA 130), avg, L, 86.7
WideResNet (PCA 170), concat, L, 84.8
WideResNet (PCA 170), concat, L, 93.0
VGG + blocks [3], L, 74.9

It is worth noting that in the pyramidal fisher motion (PFM)
[41] approach, the input frames had initial size 640 X 480 and the
resolution was not changed. Even though we reduced the inputs,
the quality of the algorithms was not only maintained but even
improved. Although the Rank-5 metric produced using the VGG-
like network was larger, the difference was very small and the
WideResNet architecture required far fewer parameters, suggesting
that the latter architecture is more appropriate for solving the gait
recognition problem.

It is also interesting to note that the L, metric always produced
the higher accuracy of classification, suggesting that it is more
suitable for measuring the similarity of gait feature vectors.

To check how sensitive the proposed method is to small
appearance changes, we evaluated the recognition quality for
different clothing and carrying conditions separately. The results of
such separation are presented in Table 4. They confirm that
although the changes in the silhouette and shoe change can
influence not only appearance but the gait itself, our model can
cope with them and remain fairly accurate.

To compare the identification and verification qualities of
different settings graphically we plotted CMC and ROC curves and
calculated EER. These metrics are shown in Fig. 5.

As the WideResNet architecture was dominantly successful in
the evaluations, all further experiments were conducted using this
network structure.

Table 5 shows a comparison of the performance on the lateral-
view part of the CASIA dataset to the results using blocks of OF
maps [3]. The accuracy is quite high despite the use of the rather
poor training set; this might be attributable to the relatively small
number of parameters in the WideResNet architecture and the
corresponding lack of overfitting that could appear in the previous
model [3].

Similar to Table 4, Table 6 shows what impact different clothing
and carrying conditions presented in CASIA database have on
recognition quality. The data variability in this collection is more
complex than in TUM-GAID, as coat changes the silhouette more
than coating shoes, thus the decomposition of results on this dataset
into the components with different conditions is more informative.
It is seen from the table that while the presence of the bag does not
make recognition worse, the coat actually does. This worsening is
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Table 6 Results for different conditions on CASIA dataset

Method Normal Bag Coat Avg
WideResNet, L1 100.0 100.0 78.8 93.0
VGG + blocks [3], L, 94.5 78.6 516 749

Table 7 Comparison of average recognition rates for three
angles on the CASIA database

Method
Model

Average rank-1, %
Probe view

54 90 126 Mean

77.8 68.8 74.7 73.8

63.3 62.1 66.3 63.9

77.8 649 76.1 729

WideResNet (PCA 230), concat, L,
SPAE [44]
Wu [26]

predictable as the coat is not just another shirt or blouse of a
different style. Unlike shirts and blouses, a coat is outerwear which
hides human figure, changes its shape, and makes the motion of
many points of the body invisible. Thus such dress-up is a really
challenging factor complicating gait recognition. Indeed, the shape
change and joints hiding distinguish clothes difference from view
variability which affects only inner gait representation of the
model, but the gait appearance itself.

Nevertheless, the accuracy does not decrease dramatically
remaining higher than the average accuracy of the method [3].

To check if our algorithm can be applied to multiview data we
have conducted one more experiment with CASIA Dataset B.
Following the protocol from [26] we have trained the network on
all the available data for the first 24 subjects (ten videos per subject
shot at all 11 angles) and then tested the feature extractor on the
rest 100 subjects. Table 7 shows the average recognition rates at
three probe angles: 54°, 90°, and 126°. The gallery angles are all
the rest ten angles (excluding the corresponding probe one). We
compare our results with [26] showing the state-of-the-art result on
CASIA and stacked progressive auto-encoders (SPAE) [44] where
one uniform model is trained for gait data with different viewing
and carrying condition variations. For two of three considered
angles, our method achieves the highest accuracy and even
outperforms the other methods on the average.

In the experiments on the OU-ISIR database, we trained the
network using all the maps and all the view angles for each training
subject. During testing, we looked at gallery and probe views: as
the gallery views, we used those fixed at 85°, while the probe
views comprised all other angles. The NN classifier was fitted onto
the gallery frames from the first walk and tested on the probe
frames from the second walk.

We compare our method with several deep and non-deep
approaches: view transformation models quality-dependent view
transformation model (WQVTM) [45] and transformation
consistency measures (TCM+) [46] methods linear discriminant
analysis (LDA) [47] and multi-view discriminant analysis (MvDA)
[40] based on discriminant analysis, Bayesian approaches [17, 48],
and GEINet [24]. The results and a comparison are shown in
Table 8.

The experimental results revealed that the proposed algorithm
can be generalised to multiview and can obtain high accuracy even
in cases of partial information. They show that even the absence of
any texture inside the human figure (when the transitions between
body parts and pieces of clothing are not visible) keeps recognition
possible.

The second row in Table 8 shows the results of the network
trained on all the available subjects except 956 testing ones. Such
extended training set containing 2888 subjects allowed us to
improve the quality and outperform the state-of-the-art method for
some view angles. Despite being very high the results achieved
using this extended set are not highlighted as they are obtained
following the other training protocol.

Fig. 6 shows the ROC and CMC curves under the fixed gallery
view 85°. The curves of other methods were provided by their
authors. Although the recognition accuracy of our method is a bit
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Table 8 Comparison of Rank-1 and EERs on OU-ISIR dataset obtained from silhouette masks

Method Rank-1, % EER, %
Model Probe view

55 65 75 55 65 75
WideResNet, L, 92.1 96.5 97.8 0.9 0.8 0.8

WideResNet, L,, extended training set
GEINet [24]

LDA [47]

MvDA [40]

wQVTM [45]

TCM + [46]

DeepGait + Joint Bayesian [48]

joint Bayesian [17]

95.9 97.8 98.5 0.6 0.5 0.5
81.4 91.2 94.6 24 1.6 1.2
87.5 96.2 97.5 6.1 3.1 23
88.0 96.0 97.0 6.1 4.6 4.0
51.1 68.5 79.0 6.5 4.9 3.7
53.7 73.0 79.4 5.5 4.4 3.7
89.3 96.4 98.3 1.6 0.9 0.9
94.9 97.6 98.6 2.2 1.6 1.3

— TCM+ \ — TCM+ — TCM+
25 -= WQVTM 25‘ -= WQVTM 25 -= WQVTM
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Fig. 6 ROC (the first row) and CMC (the second row) curves under 85° gallery view and 55°, 65°, and 75° probe view, respectively

Table 9 Comparison of Rank-1 on OU-ISIR dataset following 5-fold cv protocol

Method Rank-1, %
Model Angular diff.

0 10 20 30 Mean
WideResNet, L, 98.4 98.2 97.1 94.1 97.0
Takemura [27] 99.2 99.2 98.6 97.0 98.8
Wu [26] 98.9 95.5 92.4 85.3 94.3

Table 10 Comparison of the results on TUM-GAID dataset
obtained using different parts of the body

Body parts Rank-1, % Rank-5, %
legs 79.7 86.5
upper body 96.2 99.7
lower body 96.3 99.6
full body 98.9 100.0
full body, upper body, lower body 99.4 100.0
full body, upper body, lower body, legs 99.8 99.9

lower than the best one [17], the quality of verification turns out to
be higher.

To compare our approach with two more cross-view recognition
methods [26, 27] that seem very successful on the OU-ISIR
database, we trained the same model following the protocol from
[26]. We conducted five-fold cross-validation (cv) using all 3844
subjects shot by two cameras. Similar to [27], we aggregated the
results and considered various differences between probe and
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gallery views. The comparison with the two approaches mentioned
above is presented in Table 9.

The results obtained after cv confirm the ability of the proposed
method to recognise people at different viewing angles. The
accuracy of the algorithm is a bit lower than [27] but outperforms
[26]. Besides, as we mentioned above, unlike these methods we do
not need the information that the frames have been shot at the same
or different viewing angles.

After the experiments using different training techniques, we
investigated which body parts are most important in gait
recognition. Results using the OU-ISIR database revealed that full-
body features are quite informative; therefore, we compared the
models trained on distinct body parts. We trained the network in
several additional modes: on each of body parts separately (full
body, pairs of leg patches, upper, and lower body) and on three
 big’ and ‘ middle’ patches: full body, upper body, and lower body
in order to check whether such a big scale is enough or particular
legs consideration is really needed. The results for TUM-GAID are
shown in Table 10.

It is seen from the first four rows that the larger the considered
area is the higher accuracy is obtained. However, even the model
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Table 11 Comparison of results on TUM-GAID for different lengths of videos

Length of video Rank-1, % Rank-5, %
50 frames 94.3 94.9
60 frames 97.5 97.8
70 frames 994 99.5
full length 99.8 99.9

Table 12 Comparison of results on CASIA-B for different lengths of videos

Video length Multi-view protocol average rank-1, % Side-view rank-1, %
Probe view
54 90 126 Mean 90

50 frames 66.85 60.95 64.05 63.95 90.33
70 frames 67.05 62.70 66.50 65.42 91.38
90 frames 67.10 66.95 69.95 68.00 92.42
110 frames 75.25 68.45 73.20 72.30 92.68
full length 77.80 68.80 74.70 73.77 92.95
Table 13 Quality of transfer learning videos even if they are recorded under conditions different from the
Training set Testing set initial video. To check such generality, we used both the available

CASIA TUM datasets in our experiment by attempting to train the algorithm on
CASIA 92.7 665 one of tl}e databases and evaluating its quglity on the other without
TUM 268 998 fine-tuning. One database was used to train the neural network and

trained on full body patches is not perfect: classification error is
more than 1%. The composition of three ‘ big’ and ° middle’
patches turns out to be more successful than the models based on
distinct body parts, but its accuracy is still lower than the five-
parts-based one. Thus we can conclude that not only one big patch,
but the set of big and middle patches is not enough for good
recognition and precise consideration of legs surroundings
improves the classification.

Our third avenue of interest was determining the length of video
needed for good gait recognition. In all of the preceding
experiments, we used the entire video sequence, totalling up to 90
(for TUM-GAID) and 130 (for CASIA-B) frames per sequence.
Tables 11 and 12 list the results of testing the algorithms on
shortened sections of TUM-GAID and CASIA sequences
(following both multi-view and side-view protocols described
above). As the viewing angle changes smoothly in the OU-ISIR
gait database and the duration of each period of constant view is
about 30 frames, which is already quite short, this experiment
cannot be done on this dataset. Since we train the network on
distinct maps and do not aggregate the features obtained for each
video while training, we have used the same WideResNet model
trained on full-length videos in each of the experiments, but only
the first n frames of each test video were used in the testing phase.
We consider n=50,60,70 for the TUM-GAID dataset and
n =50,70,90, 110 for the CASIA-B database as all the sequences
there are longer. Since we use only those frames where the figure is
fully visible and crop the boxes containing only the figure or
special part of the human's figure, the starting and finishing
positions are not important and do not have an influence on the
recognition.

Although the length of the gait cycle is about 1s, or 30-35
frames, such short sequences are found to be insufficient for good
individual recognition. The experiments conducted on two datasets
verify that increasing the number of consecutive frames for
classification improves the results. The expanded time of analysis
is required because body point motions are similar but not identical
for each step and, correspondingly, using long sequences makes
recognition more stable to small inter-step changes in walking
style. It is worth noting that video sequences may consist of a non-
integer number of gait cycles but still be accurately recognised.

In a final set of experiments, we examined the stability and
transferability of the proposed algorithm. If the feature extractor is
actually general and does not depend on the background or the
appearance of a person, it should be able to extract features from
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to get feature extractor and the final classifier was fitted and tested
on the second one. Since the OU-ISIR database is distributed in a
silhouette form, the models trained on TUM and CASIA are not
applicable to this dataset and we cannot transfer the models from
the OU-ISIR to these two datasets and back. Thus, only two of
three databases were used in this set of experiments. Table 13
shows the accuracy of the transference of the algorithm between
datasets.

Note that even when the algorithm was trained on the other
dataset, it worked on CASIA dataset B better than the method [3]
trained on CASIA. Nevertheless, the accuracy of recognition
deteriorated  considerably following transference between
databases, with the error increasing by a factor of three. With
TUM-GAID, the results are even worse. Training the classifier on
CASIA resulted in recognition of only 66,5% of the TUM testing
videos, which is a factor of 1, 5 worse than that obtained by the
algorithm trained on TUM. This suggests that the algorithm over
fits and that the amount of training data (particularly in the CASIA
dataset) is not sufficient for constructing a general algorithm. To
make algorithm stable to small variations of camera parameters, its
height or distance from the subject, we need more varied training
dataset. All the databases existing now consist of videos shot in
exactly the same conditions which prevent the generalisation of the
algorithms.

5 Implementation details

Some of the auxiliary methods were implemented using public
libraries. The bounding boxes for human figures were computed
using silhouette masks found by background subtraction. This is
quite a rough method, but as each frame in the databases contained
only one moving person, it worked well. The maps of OF were
calculated by applying the Farnebdck [32] algorithm implemented
in the OpenCV library. The poses were evaluated using the open-
source implementation of the [33] method to find the key points of
the body. For the main part of the algorithm, we used Lasagne with
a Theano backend and trained the networks on an NVIDIA GTX
1070 GPU. The main WideResNet employing five body parts was
trained on the TUM-GAID dataset in 10 h. The model was
optimised using the Nesterov Momentum gradient descent method
with the learning rate reduced from 0.1 by a factor of 10 each time
the training quality stopped increasing.

6 Conclusions and further work

In this study, we proposed a pose-based convolutional neural
model for gait recognition. Our experimental results demonstrated
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that although sufficiently high accuracy can be obtained only by
using OF maps for the full-height region, collecting additional
information from regions around the joints improves the results,
surpassing the state-of-the-art on TUM-GAID. Our model can also
be successfully applied to the moving silhouettes in OU-ISIR,
which shows that the most important information for gait
recognition is the movement of external edges and that our method
can be straightforwardly applied to multiview gait recognition.
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